Forthcoming in Mathematical Programming MAXIMIZING A CLASS OF SUBMODULAR UTILITY FUNCTIONS

نویسنده

  • SHABBIR AHMED
چکیده

Given a finite ground set N and a value vector a ∈ R , we consider optimization problems involving maximization of a submodular set utility function of the form h(S) = f (∑ i∈S ai ) , S ⊆ N , where f is a strictly concave, increasing, differentiable function. This function appears frequently in combinatorial optimization problems when modeling risk aversion and decreasing marginal preferences, for instance, in risk-averse capital budgeting under uncertainty, competitive facility location, and combinatorial auctions. These problems can be formulated as linear mixed 0-1 programs. However, the standard formulation of these problems using submodular inequalities is ineffective for their solution, except for very small instances. In this paper, we perform a polyhedral analysis of a relevant mixed-integer set and, by exploiting the structure of the utility function h, strengthen the standard submodular formulation significantly. We show the lifting problem of the submodular inequalities to be a submodular maximization problem with a special structure solvable by a greedy algorithm, which leads to an easily-computable strengthening by subadditive lifting of the inequalities. Computational experiments on expected utility maximization in capital budgeting show the effectiveness of the new formulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results about the Contractions and the Pendant Pairs of a Submodular System

Submodularity is an important  property of set functions with deep theoretical results  and various  applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization.  Nowadays submodular functions optimization has been attracted by many researchers.  Pendant pairs of a symmetric...

متن کامل

Budgeted stream-based active learning via adaptive submodular maximization

Active learning enables us to reduce the annotation cost by adaptively selecting unlabeled instances to be labeled. For pool-based active learning, several effective methods with theoretical guarantees have been developed through maximizing some utility function satisfying adaptive submodularity. In contrast, there have been few methods for stream-based active learning based on adaptive submodu...

متن کامل

The allocation problem with submodular utility functions (preliminary version)

We consider the problem of maximizing welfare when allocating items to players with submodular utility functions. Our main result is a way of rounding any fractional solution to a linear programming relaxation to this problem so as to give a feasible solution of welfare at least 1−1/e+2 of the value of the fractional solution, where 2 > 0 is some fixed constant. This resolves the question of wh...

متن کامل

Non-Monotone Adaptive Submodular Maximization

A wide range of AI problems, such as sensor placement, active learning, and network influence maximization, require sequentially selecting elements from a large set with the goal of optimizing the utility of the selected subset. Moreover, each element that is picked may provide stochastic feedback, which can be used to make smarter decisions about future selections. Finding efficient policies f...

متن کامل

Maximizing a class of submodular utility functions with constraints

Motivated by stochastic 0-1 integer programming problems with an expected utility objective, we study the mixed-integer nonlinear set: P = { (w, x) ∈ R× {0, 1}N : w ≤ f (a′x + d), b′x ≤ B } where N is a positive integer, f : R 7→ R is a concave function, a, b ∈ RN are nonnegative vectors, d is a real number and B is a positive real number. We propose a family of inequalities for the convex hull...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008